姓 名: 周奇
职 称: 副教授,博士生导师
电 话: 027-87540185
电子邮箱:qizhou@hust.edu.cn & qizhouhust@gmail.com
个人基本情况
周奇,副教授,博士生导师,英国帝国理工访问学者,美国佐治亚理工联合培养博士,国家数字化设计与制造创新中心激光制造所副所长,金沙威尼斯欢乐娱人城本科生院教务工作办公室副主任(挂职),金沙威尼斯欢乐娱人城数字空天技术研究所副所长,首批国防创新“引领基金”获得者, 入选中国科学技术协会 “第六届青年人才托举工程”、湖北省教育厅重大人才计划、金沙威尼斯欢乐娱人城“优秀青年教师培养计划”、“华中卓越学者”,获国家自然科学基金优秀结题奖、金沙威尼斯欢乐娱人城“学术新人奖”,美国航空航天学会(AIAA)高级会员,中国机械工程学会(CMES)高级会员,美国机械工程师学会(ASME)会员。迄今以第一/通讯作者在《AIAA Journal》、《Journal of Mechanical Design》等国际知名期刊发表SCI论文50余篇,含ESI高被引论文4篇,领域前沿论文3篇,封面论文2篇;出版英文专著2部、教材1部、中文专著2部;申请国家专利10余项,软件著作权10余项;担任《中国舰船研究》首届青年编委、《中国舰船研究》“数据驱动的舰船优化设计”专辑特约主编,担任第七届国际系统建模与优化设计会议(ICSMO)分会场主席,第九届控制-机电一体化与自动化国际会议(ICCMA)分会场主席,ICAME 2018等10余国际会议技术委员会委员;《Robotics and Computer-Integrated Manufacturing》、《Advances in Engineering Software》、《Journal of Manufacturing Processes》等SCI期刊“Outstanding Reviewer”;《AIAA Journal》、《Journal of Mechanical Design》、《Structural and Multidisciplinary Optimization》等30余SCI期刊审稿人。
工作经历
2019/11-至今 金沙威尼斯欢乐娱人城 副教授(破格晋升)
2019/09-2020/08 英国帝国理工 访问学者(优秀青年教师培养计划)
2018/02-2019/10 金沙威尼斯欢乐娱人城 讲师
教育经历
2014/09-2018/01 金沙威尼斯欢乐娱人城机械学院 博士
2016/09-2017/09 美国佐治亚理工 博士(联合培养)
2012/09-2014/04 中船重工第701研究所 硕士(提前1年毕业)
2012/09-2013/06 金沙威尼斯欢乐娱人城船海学院 硕士(联合培养)
2008/09-2012/06 中国海洋大学工程学院 学士
研究方向
机器学习、装备智能优化设计、数字孪生
代表性科研项目
近五年主持重大基础研究项目、国家自然科学基金面上项目等课题20余项。
代表性论著
1.Zhou Qi, Zhao Min, Hu Jiexiang, Ma Mengying, Multi-fidelity surrogates modeling, optimization, and applications. Springer.
2.Jiang Ping, Zhou Qi, Shao Xinyu (2020). Surrogate Model-Based Engineering Design and Optimization. Springer, 2020.
3.Luo, Shuyang, Huang Xufeng, Wang Yanzhi, Luo Rongmin, Zhou Qi (2022). Transfer learning based on improved stacked autoencoder for bearing fault diagnosis. Knowledge-Based Systems 256: 109846.
4.Lin Quan, Hu Jiexiang, Zhou Qi*, Cheng Yuansheng, Hu Zhen, Couckuyt Ivo, Dhaene Tom. (2021). Multi-output Gaussian process prediction for computationally expensive problems with multiple levels of fidelity. Knowledge-Based Systems, 107151.
5.Zhou Qi, Wu Yuda, Guo Zhendong, Hu Jiexiang, Jin Peng* (2020). A Generalized Hierarchical Co-Kriging Model for Multi-Fidelity Data Fusion. Structural and Multidisciplinary Optimization, 62:1885–1904.
6.Hu Jiexiang, Jiang Ping, Zhou Qi*, McKeand Austin, Choi Seung-Kyum (2020). Model validation methods for multiple correlated responses via covariance-overlap based distance. Journal of Mechanical Design, 142(4): 041401.
7.Zhou, Qi, Shao Xinyu, Jiang Ping*, Xie Tingli, Hu Jiexiang, Shu Leshi, Cao Longchao, Gao Zhongmei (2018). A multi-objective robust optimization approach for engineering design under interval uncertainty. Engineering Computations, 142(4): 041401.
8.Zhou, Qi, Wang Yan, Choi Seung-Kyum, Jiang Ping*, Shao Xinyu, and Hu Jiexiang. (2017). A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Systems, 134, 199-212.
9.Zhou, Qi, Shao Xinyu, Jiang Ping*, Gao Zhongmei, Zhou Hui, and Shu Leshi. (2016). An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling. Journal of Engineering Design, 27(4-6), 205-231.
10.Zhou, Qi, Shao Xinyu, Jiang Ping*, Zhou Hui, and Shu Leshi. (2015). An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simulation Modelling Practice and Theory, 59, 18-35.
论著实时更新:https://scholar.google.fr/citations?user=HEMahGkAAAAJ&hl=en
课题组毕业生去向(联合指导)
升学:
张亚辉,荷兰 阿姆斯特丹大学理学院信息系,攻读博士学位(J1,J2)
谢婷丽,美国 佐治亚理工机械学院,攻读博士学位(J3,J4)
阮雄风,比利时 鲁汶大学机械工程系,攻读博士学位(J5,J6)
程 吉,荷兰 代尔夫特理工航空工程学院,攻读博士学位(J7,J8,J9)
魏 华,比利时 根特大学工学院信息技术系,攻读博士学位(J10)
易家祥,荷兰 代尔夫特理工机械-海洋-材料学院,攻读博士学位(J11,J12,J13,J14)
就业:
王超超,华为技术有限公司,研发
孟祥争,深圳大疆创新科技有限公司,研发
彭玉童,中国航天科技集团有限公司第七研究院,研发
邬宇达,支付宝(杭州)信息技术有限公司,研发
徐杰,海康威视数字技术股份有限公司(武汉),研发
李京昌,新加坡国立大学,博士后
李梦磊,华为技术有限公司(武汉),研发
程萌,中船701研究所,研发
J1. Zhang, Y., Zhou, T., Huang, X., Cao, L., & Zhou, Q.* (2021). Fault diagnosis of rotating machinery based on recurrent neural networks. Measurement, 171, 108774.
J2. Jiang, P., Zhang, Y., Zhou, Q.*, Shao, X., Hu, J., & Shu, L. (2018). An adaptive sampling strategy for Kriging metamodel based on Delaunay triangulation and TOPSIS. Applied Intelligence, 48(6), 1644-1656.
J3. Xie, T., Jiang, P.*, Zhou, Q., Shu, L., Zhang, Y., Meng, X., & Wei, H. (2018). Advanced multi-objective robust optimization under interval uncertainty using kriging model and support vector machine. Journal of Computing and Information Science in Engineering, 18(4)18(4): 041012.
J4. Jiang, P., Xie, T., Zhou, Q.*, Shao, X., Hu, J., & Cao, L. (2018). A space mapping method based on Gaussian process model for variable fidelity metamodeling. Simulation Modelling Practice and Theory, 35(2), 580-603.
J5. Ruan, X., Jiang, P., Zhou, Q.*, Hu, J., & Shu, L., (2020). Variable-fidelity probability of improvement method for efficient global optimization of expensive black-box problems. Structural and Multidisciplinary Optimization, 62,3021–3052.
J6. Ruan, X., Zhou, Q., Shu, L., Hu, J., & Cao, L.* (2018). Accurate prediction of the weld bead characteristic in laser keyhole welding based on the stochastic Kriging model. Metals, 8(7), 486.
J7. Cheng, J., Jiang, P., Zhou, Q.*, Hu, J., & Shu, L. (2021). A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems. Applied Soft Computing, 106, 107276.
J8. Cheng, J., Jiang, P., Zhou, Q.*, Hu, J., Yu, T., Shu, L., & Shao, X. (2019). A lower confidence bounding approach based on the coefficient of variation for expensive global design optimization. Engineering Computations, 36(3), 830-849.
J9. Jiang, P., Cheng, J., Zhou, Q.*, Shu, L., & Hu, J. (2019) .Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations. AIAA J, 57(12), 5416–5430.
J10. Wei, H., Shu, L.*, Yang, Y., Zhou, Q., Zhong, L., & Jiang, P. (2020). An improved sequential multi-objective robust optimisation approach considering interval uncertainty reduction under mixed uncertainties. Journal of Engineering Design, 1-29.
J11. Yi, J., Zhou, Q., Cheng, Y., & Liu, J.*, (2020). Efficient adaptive Kriging-based reliability analysis combining new learning function and error-based stopping criterion. Structural and Multidisciplinary Optimization, 62(5), 2517-2536.
J12. Yi, J., Wu, F., Zhou, Q., Cheng, Y., Ling, H., & Liu, J.*, (2021). An active-learning method based on multi-fidelity Kriging model for structural reliability analysis. Structural and Multidisciplinary Optimization, 63(1), 173-195.
J13. Qian, J., Yi, J., Cheng, Y., Liu, J., Zhou, Q.*. A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem. Engineering with Computers. 2020; 36: 993-1009.
J14. Qian, J., Yi, J., Cheng, Y., Liu, J., Zhou, Q.*. A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem. Engineering with Computers. 2020; 36: 993-1009.
学生获奖
博士研究生:
李京昌,研究生国家奖学金
林 泉,研究生国家奖学金
硕士研究生:
张亚辉,研究生国家奖学金
谢婷丽,研究生国家奖学金
阮雄风,研究生国家奖学金
程 吉,研究生国家奖学金
易家祥,研究生国家奖学金
邬宇达,研究生国家奖学金
程萌, 研究生国家奖学金
李梦磊,徐杰,罗舒扬 第四届智能制造赛研究生组全国一等奖
程萌,徐杰,罗舒扬 “华为杯”第十八届中国研究生数学建模竞赛全国二等奖
黄旭丰,罗舒扬,吴金红 “华为杯”第十九届中国研究生数学建模竞赛全国二等奖
吴金红,罗荣敏,王楚 中国大学生机械工程创新创意大赛智能制造赛全国二等奖
王延之,吴金红,黄旭丰等 2022中国(天津)工业APP创新应用大赛全国二等奖
吴金红等 华为软件精英挑战赛全国二等奖
程萌,徐杰,罗舒扬 长三角数学建模大赛,研究生组全国一等奖
招生要求
踏实勤奋,有上进心,敢于担当!
课题组与美国佐治亚理工、英国帝国理工等国际知名院校建立了长期合作关系,欢迎有保研资格或立志攻读博士学位的学生咨询与申报。